

Welcome to tapioca-wrapper documentation!

Contents:

	About

	Quickstart
	Using a tapioca package

	What’s tapioca?

	Getting started

	TapiocaClient object

	TapiocaClientExecutor object

	Features
	TapiocaClient

	TapiocaClientExecutor

	Exceptions

	Serializers

	Serializers
	Usage

	Built-ins

	Writing a custom serializer

	Exceptions
	Catching API errors

	Flavours
	Available Flavours

	Your flavour

	Building a wrapper
	Wrapping an API with Tapioca

	Adapter

	Features

	TapiocaAdapter class
	Attributes

	Methods

	Contributors
	Thanks!

	Changelog
	2.3.0

	2.2.0

	2.1.0

	2.0.2

	2.0.1

	2.0

	1.5.1

	1.5

	1.4

	1.3

	1.2.3

	1.1.10

	1.1

	1.0

	0.6.0

	0.5.3

	0.5.1

	0.5.0

	0.4.1

About

tapioca-wrapper provides an easy way to make explorable python API wrappers.
APIs wrapped by Tapioca follow a simple interaction pattern that works uniformly so developers don’t need to learn how to use a new coding interface/style for each service API.

[image: Tapioca]

Quickstart

Using a tapioca package

Yes, you are in the right place

There is a good chance you found this page because you clicked a link from some python package called tapioca-SOMETHING. Well, welcome! You are in the right place. This page will teach you the basics of how to use the package that sent you here. If you didn’t arrive here from another package, then please keep reading. The concepts learned here apply to any tapioca-package available.

What’s tapioca?

tapioca is an API wrapper maker. It helps Python developers creating packages for APIs (like the Facebook Graph API or the Twitter REST API. You can find a full list of available API packages made with tapioca here.

All wrappers made with tapioca follow a simple interaction pattern that works uniformly, so once you learn how tapioca works, you will be able to work with any tapioca package available.

Getting started

We will use tapioca-facebook as example to guide us through tapioca concepts. Let’s install tapioca-facebook:

$ pip install tapioca-facebook

To better experience tapioca, we will also use IPython:

$ pip install ipython

Let’s explore!

Go to https://developers.facebook.com/tools/explorer/, click “Get Access Token”, select all “User Data Permissions” and “Extended Permissions”, and click “Get Access Token”. This will give you a temporary access token to play with Facebook API. In case it expires, just generate a new one.

TapiocaClient object

This is how you initialize your tapioca client:

from tapioca_facebook import Facebook

api = Facebook(access_token='{your_genereated_access_token}')

If you are using IPython, you can now list available endpoints by typing api. and pressing tab.

>>> api.
api.user_likes api.page_blocked api.page_locations
api.page_statuses api.user_applications_developer api.user_friends
api.user_invitable_friends api.user_photos api.user_videos
api.object api.page_conversations api.page_milestones
...

Resources

Those are the available endpoints for the Facebook API. As we can see, there is one called user_likes. Let’s take a closer look.

Type api.user_likes? and press enter.

In [3]: api.user_likes?
...
Docstring:
Automatic generated __doc__ from resource_mapping.
Resource: {id}/likes
Docs: https://developers.facebook.com/docs/graph-api/reference/v2.2/user/likes

As we can see, the user_likes resource requires an id to be passed to the URL. Let’s do it:

api.user_likes(id='me')

Fetching data

To request the current user likes, its easy:

likes = api.user_likes(id='me').get()

To print the returned data:

In [9]: likes().data
OUT [9]: {
 'data': [...],
 'paging': {...}
}

Exploring data

We can also explore the returned data using the IPython tab auto-complete:

In [9]: likes.
likes.data likes.paging

Iterating over data

You can iterate over returned data:

likes = api.user_likes(id='me').get()

for like in likes.data:
 print(like.id().data)

Items passed to the for loop will be wrapped in tapioca so you still have access to all features.

TapiocaClientExecutor object

Whenever you make a “call” on a TapiocaClient, it will return an TapiocaClientExecutor object. You will use the executor every time you want to perform an action over data you possess.

We did this already when we filled the URL parameters for the user_like resource (calling it and passing the argument id='me'). In this new object, you will find many methods to help you play with the data available.

Here is the list of the methods available in a TapiocaClientExecutor:

Making requests

Tapioca uses the requests [http://docs.python-requests.org/en/latest/] library to make requests so HTTP methods will work just the same (get()/post()/put()/delete()/head()/options()). The only difference is that we don’t need to pass a URL since tapioca will take care of this.

likes = api.user_likes(id='me').get()

URL params

To pass query string parameters in the URL, you can use the `params` parameter:

likes = api.user_likes(id='me').get(
 params={'limit': 5})

This will return only 5 results.

Body data

If you need to pass data in the body of your request, you can use the `data` parameter. For example, let’s post a message to a Facebook wall:

this will only work if you have a post to wall permission
api.user_feed(id='me').post(
 data={'message': 'I love tapiocas!! S2'})

Please read requests [http://docs.python-requests.org/en/latest/] for more detailed information about how to use HTTP methods.

Accessing raw data

Use data to return data contained in the Tapioca object.

>>> likes = api.user_likes(id='me').get()
>>> likes().data
{
 'data': [...],
 'paging': {...}
}
>>> # this will print only the array contained
>>> # in the 'data' field of the response
>>> likes.data().data
>>> [...]

Dynamically fetching pages

Many APIs use a paging concept to provide large amounts of data. This way, data is returned in multiple requests to avoid a single long request. Tapioca is built to provide an easy way to access paged data using the pages() method:

likes = api.user_likes(id='me').get()

for like in likes().pages():
 print(like.name().data)

This will keep fetching user likes until there are none left. Items passed to the for loop will be wrapped in tapioca so you still have access to all features.

This method also accepts max_pages and max_items parameters. If both parameters are used, the for loop will stop after max_pages are fetched or max_items are yielded, whichever comes first:

for item in resp().pages(max_pages=2, max_items=40):
 print(item)
in this example, the for loop will stop after two pages are fetched or 40 items are yielded,
whichever comes first.

Accessing wrapped data attributes

It’s possible to access wrapped data attributes on executor. For example, it’s possible to reverse a wrapped list:

likes = api.user_likes(id='me').get()

likes_list = likes.data
likes_list().reverse()
items in the likes_list are now in reverse order
but still wrapped in a tapioca object

Opening documentation in the browser

If you are accessing a resource, you can call open_docs to open the resource documentation in a browser:

api.user_likes().open_docs()

Opening any link in the browser

Whenever the data contained in a tapioca object is a URL, you can open it in a browser by using the open_in_browser() method.

For more information on what wrappers are capable of, please refer to the features section.

Features

Here are some features tapioca supports. The wrapper you are using may support them or not, it will depend on the tapioca-wrapper version it is tied to and if the developer implemented the methods needed to support the feature. Either way, if you find yourself in a situation where you need one of these features, clone the wrapper, update the tapioca-wrapper version to the latest one, implement the features you need and submit a pull request to the developer. You will be helping a lot of people!

TapiocaClient

The first object you get after you instanciate a tapioca wrapper is an instance of the TapiocaClient class. This class is capable of accessing the API endpoints of the wrapper and traversing response objects. No other action besides those can be achieved from a TapiocaClient. To retrieve the raw data returned from the API call you will need to transform it in a TapiocaClientExecutor.

TODO: add examples

Default URL params

Sometimes URLs templates need parameters that will be repeated across all API calls. For example, an user id:

http://www.someapi.com/{user_id}/resources/
http://www.someapi.com/{user_id}/resources/{resource_id}/
http://www.someapi.com/{user_id}/other-resources/{other_id}/

In this cases you can instantiate the wrapper passing a default_url_params parameter, and they will be used automatically to fill URL templates.

cli = MyWrapper(access_token='some_token', default_url_params={'user_id': 123456})
cli.resources() # http://www.someapi.com/123456/resources/

Using an existing requests.Session

Requests provides access to a number of advanced features by letting users maintain a Session object [http://docs.python-requests.org/en/master/user/advanced/#session-objects].

To use these features you can create a TapiocaClient with an existing session by passing it to the new client as the session parameter:

session = requests.Session()
cli = MyWrapper(access_token='some_token', session=session)
 cli.resources() # http://www.someapi.com/123456/resources/

This allows us to perform some interesting operations without having to support them directly in TapiocaClient.
For example caching for github requests using cachecontrol [https://cachecontrol.readthedocs.io/en/latest/]:

from cachecontrol import CacheControl
from cachecontrol.caches import FileCache
import requests
import tapioca_github

session = CacheControl(requests.Session(), cache=FileCache('webcache'))
gh = tapioca_github.Github(client_id='some_id', access_token='some_token', session=session)
response = gh.repo_single(owner="vintasoftware", repo="tapioca-wrapper").get()
repo_data = response().data

This will cache the E-tags provided by github to the folder webcache.

TapiocaClientExecutor

Every time you call in TapiocaClient you will get a TapiocaClientExecutor. Here are the features available in a TapiocaClientExecutor:

Accessing raw response data

To access the raw data contained in the executor, use the data attribute. To access the raw response, use the response attribute. To access the status code of the response, use the status_code attribute. If during the request the Auth refreshing process was executed, the returned value from it will be accessible in the refresh_data attribute.

TODO: add examples

HTTP calls

Executors have access to make HTTP calls using the current data it possesses as the URL. The requests [http://docs.python-requests.org/en/latest/] library is used as the engine to perform API calls. Every key word parameter you pass to: get(), post(), put(), patch(), delete() methods will be directly passed to the request library call. This means you will be using params={'myparam': 'paramvalue'} to send querystring arguments in the url and data={'datakey': 'keyvalue'} to send data in the body of the request.

TODO: add examples

Auth refreshing (*)

Some clients need to update its token once they have expired. If the client supports this feature, you might instantiate it
passing `refresh_token_by_default=True` or make any HTTP call passing `refresh_auth=True` (both defaults to
`False`). Note that if your client instance have `refresh_token_by_default=True`, then you don’t need to
explicity set it on HTTP calls.

TODO: add examples

*the wrapper you are current using may not support this feature

Pagination (*)

Use pages() method to call an endpoint that returns a collection of objects in batches. This will make your client automatically fetch more data untill there is none more left. You may use max_pages and/or max_items to limit the number of items you want to iterate over.

TODO: add examples

*the wrapper you are current using may not support this feature

Open docs (*)

When accessing an endpoint, you may want to read it’s documentation in the internet. By calling open_docs() in a python interactive session, the doc page will be openned in a browser.

TODO: add examples

*the wrapper you are current using may not support this feature

Open in the browser (*)

Whenever the data contained in the executor is a URL, you can directly open it in the browser from an interactive session by calling open_in_browser()

TODO: add examples

*the wrapper you are current using may not support this feature

Exceptions

Tapioca built in exceptions will help you to beautifuly catch and handle whenever there is a client or server error. Make sure the wrapper you are using correctly raises exceptions, the developer might not have treated this. Please refer to the exceptions for more information about exceptions.

Serializers

Serializers will help you processing data before it is sent to the endpoint and transforming data from responses into python objects. Please refer to the serializers for more information about serializers.

Serializers

Serializer classes are capable of performing serialization and deserialization of data.

Serialization is the transformation of data in a native format (in our case Python data types) into a serialized format (e.g. text). For example, this could be transforming a native Python Datetime instance containing a date into a string.

Deserialization is the transformation of data in a serialized format (e.g. text) into a native format. For example, this could be transforming a string containing a date into a native Python Datetime instance.

Usage

Serialization

Data serialization is done in the background when tapioca is executing the request. It will traverse any data structure passed to the data param of the request and convert Python data types into serialized types.

>>> reponse = cli.the_resource().post(data={'date': datetime.today()})

In this example, datetime.today() will be converted into a string formatted date just before the request is executed.

Deserialization

To deserialize data, you need to transform your client into an executor and then call a deserialization method from it:

>>> reponse = cli.the_resource().get()
>>> print(response.created_at())
<TapiocaClientExecutor object
2015-10-25T22:34:51+00:00>
>>> print(respose.created_at().to_datetime())
2015-10-25 22:34:51+00:00
>>> print(type(respose.created_at().to_datetime()))
datetime.datetime

Swapping the default serializer

Clients might have the default SimpleSerializer, some custom serializer designed by the wrapper creator, or even no serializer. Either way, you can swap it for one of your own even if you were not the developer of the library. For this, you only need to pass the desired serializer class during the client initialization:

from my_serializers import MyCustomSerializer

cli = MyServiceClient(
 access_token='blablabla',
 serializer_class=MyCustomSerializer)

Built-ins

	
class SimpleSerializer

	

SimpleSerializer is a very basic and generic serializer. It is included by default in adapters unless explicitly removed. It supports serialization from Decimal and datetime and deserialization methods to those two types as well. Here is it’s full code:

class SimpleSerializer(BaseSerializer):

def to_datetime(self, value):
 return arrow.get(value).datetime

def to_decimal(self, value):
 return Decimal(value)

def serialize_decimal(self, data):
 return str(data)

def serialize_datetime(self, data):
 return arrow.get(data).isoformat()

As you can see, datetime values will be formatted to iso format.

Writing a custom serializer

To write a custom serializer, you just need to extend the BaseSerializer class and add the methods you want. But you can also extend from SimpleSerializer to inherit its functionalities.

Serializing

To allow serialization of any desired data type, add a method to your serializer named using the following pattern: serialize_ + name_of_your_data_type_in_lower_case. For example:

class MyCustomDataType(object):
 message = ''

class MyCustomSerializer(SimpleSerializer):

 def serialize_mycustomdatatype(self, data):
 return data.message

Deserializing

Any method starting with to_ in your custom serializer class will be available for data deserialization. It also accepts key word arguments.

from tapioca.serializers import BaseSerializer

class MyCustomSerializer(BaseSerializer):

 def to_striped(self, value, **kwargs):
 return value.strip()

Here’s a usage example for it:

from my_serializers import MyCustomSerializer

cli = MyServiceClient(
 access_token='blablabla',
 serializer_class=MyCustomSerializer)

response = cli.the_resource().get()

striped_data = response.the_data().to_striped()

Exceptions

Catching API errors

Tapioca supports 2 main types of exceptions: ClientError and ServerError. The default implementation raises ClientError for HTTP response 4xx status codes and ServerError for 5xx status codes. Since each API has its own ways of reporting errors and not all of them follow HTTP recommendations for status codes, this can be overriden by each implemented client to reflect its behaviour. Both of these exceptions extend TapiocaException which can be used to catch errors in a more generic way.

	
class TapiocaException

	

Base class for tapioca exceptions. Example usage:

from tapioca.exceptions import TapiocaException

try:
 cli.fetch_something().get()
except TapiocaException, e:
 print("API call failed with error %s", e.status_code)

You can also access a tapioca client that contains response data from the exception:

from tapioca.exceptions import TapiocaException

try:
 cli.fetch_something().get()
except TapiocaException, e:
 print(e.client().data)

	
class ClientError

	

Default exception for client errors. Extends from TapiocaException.

	
class ServerError

	

Default exception for server errors. Extends from TapiocaException.

Flavours

Available Flavours

Facebook

https://github.com/vintasoftware/tapioca-facebook

Twitter

https://github.com/vintasoftware/tapioca-twitter

Mandrill

https://github.com/vintasoftware/tapioca-mandrill

Parse

https://github.com/vintasoftware/tapioca-parse

Bitbucket

https://github.com/vintasoftware/tapioca-bitbucket

Disqus

https://github.com/marctc/tapioca-disqus

Harvest

https://github.com/vintasoftware/tapioca-harvest

CrunchBase

https://github.com/vu3jej/tapioca-crunchbase

Otter

https://github.com/vu3jej/tapioca-otter

GitHub

https://github.com/gileno/tapioca-github

Meetup

https://github.com/lightstrike/tapioca-meetup

Toggl

https://github.com/hackebrot/tapioca-toggl

Braspag

https://github.com/parafernalia/tapioca_braspag

Iugu

https://github.com/solidarium/tapioca-iugu

Instagram

https://github.com/vintasoftware/tapioca-instagram

Youtube

https://github.com/vintasoftware/tapioca-youtube

Asana

https://github.com/henriquebastos/tapioca-asana

Desk

https://github.com/medeirosthiago/tapioca-desk

Mailgun

https://github.com/vintasoftware/tapioca-mailgun

Discourse

https://github.com/humrochagf/tapioca-discourse

StatusPage

https://github.com/olist/tapioca-statuspage

Trello

https://github.com/humrochagf/tapioca-trello

Your flavour

To create a new wrapper, please refer to Building a wrapper. Upload it to pypi and send a pull request here for it to be added to the list.

Building a wrapper

Wrapping an API with Tapioca

The easiest way to wrap an API using tapioca is starting from the cookiecutter template [https://github.com/vintasoftware/cookiecutter-tapioca].

To use it, install cookiecutter in your machine:

pip install cookiecutter

and then use it to download the template and run the config steps:

cookiecutter gh:vintasoftware/cookiecutter-tapioca

After this process, it’s possible that you have a ready to go wrapper. But in most cases, you will need to customize stuff. Read through this document to understand what methods are available and how your wrapper can make the most of tapioca. Also, you might want to take a look in the source code of other wrappers to get more ideas.

In case you are having any difficulties, seek help on Gitter [https://gitter.im/vintasoftware/tapioca-wrapper] or send an email to contact@vinta.com.br .

Adapter

Tapioca features are mainly implemented in the TapiocaClient and TapiocaClientExecutor classes. Those are generic classes common to all wrappers and cannot be customized to specific services. All the code specific to the API wrapper you are creating goes in your adapter class, which should inherit from TapiocaAdapter and implement specific behaviours to the service you are working with.

Take a look in the generated code from the cookiecutter or in the tapioca-facebook adapter [https://github.com/vintasoftware/tapioca-facebook/blob/master/tapioca_facebook/tapioca_facebook.py] to get a little familiar with it before you continue. Note that at the end of the module you will need to perform the transformation of your adapter into a client:

Facebook = generate_wrapper_from_adapter(FacebookClientAdapter)

Plase refer to the TapiocaAdapter class document for more information on the available methods.

Features

Here is some information you should know when building your wrapper. You may choose to or not to support features marked with (optional).

Resource Mapping

The resource mapping is a very simple dictionary which will tell your tapioca client about the available endpoints and how to call them. There’s an example in your cookiecutter generated project. You can also take a look at tapioca-facebook’s resource mapping [https://github.com/vintasoftware/tapioca-facebook/blob/master/tapioca_facebook/resource_mapping.py].

Tapioca uses requests [http://docs.python-requests.org/en/latest/] to perform HTTP requests. This is important to know because you will be using the method get_request_kwargs to set authentication details and return a dictionary that will be passed directly to the request method.

Formatting data

Use the methods format_data_to_request and response_to_native to correctly treat data leaving and being received in your wrapper.

TODO: add examples

You might want to use one of the following mixins to help you with data format handling in your wrapper:

	FormAdapterMixin

	JSONAdapterMixin

	XMLAdapterMixin

Exceptions

Overwrite the process_response method to identify API server and client errors raising the correct exception accordingly. Please refer to the exceptions for more information about exceptions.

TODO: add examples

Pagination (optional)

get_iterator_list and get_iterator_next_request_kwargs are the two methods you will need to implement for the executor pages() method to work.

TODO: add examples

Serializers (optional)

Set a serializer_class attribute or overwrite the get_serializer() method in your wrapper for it to have a default serializer.

from tapioca import TapiocaAdapter
from tapioca.serializers import SimpleSerializer

class MyAPISerializer(SimpleSerializer):

 def serialize_datetime(self, data):
 return data.isoformat()

class MyAPIAdapter(TapiocaAdapter):
 serializer_class = MyAPISerializer
 ...

In the example, every time a datetime is passed to the parameters of an HTTP method, it will be converted to an ISO formatted string.

It’s important that you let people know you are providing a serializer, so make sure you have it documented in your README.

Serialization
- datetime
- Decimal

Deserialization
- datetime
- Decimal

Please refer to the serializers for more information about serializers.

Refreshing Authentication (optional)

You can implement the `refresh_authentication` and `is_authentication_expired` methods in your Tapioca Client to refresh your authentication token every time it expires.

`is_authentication_expired` receives an error object from the request method (it contains the server response and HTTP Status code). You can use it to decide if a request failed because of the token. This method should return `True` if the authentication is expired or `False` otherwise (default behavior).

refresh_authentication receives api_params and should perform the token refresh protocol. If it is successfull it should return a truthy value (the original request will then be automatically tried). If the token refresh fails, it should return a falsy value (and the the original request wont be retried).

Once these methods are implemented, the client can be instantiated with `refresh_token_by_default=True` (or pass
`refresh_token=True` in HTTP calls) and `refresh_authentication` will be called automatically.

 def is_authentication_expired(self, exception, *args, **kwargs):

def refresh_authentication(self, api_params, *args, **kwargs):
 ...

XMLAdapterMixin Configuration (only if required)

Additionally, the XMLAdapterMixin accepts configuration keyword arguments to be passed to the xmltodict library during parsing and unparsing by prefixing the xmltodict keyword with xmltodict_parse__ or xmltodict_unparse respectively. These parameters should be configured so that the end-user has a consistent experience across multiple Tapioca wrappers irrespective of various API requirements from wrapper to wrapper.

Note that the end-user should not need to modify these keyword arguments themselves. See xmltodict docs [http://xmltodict.readthedocs.org/en/latest/] and source [https://github.com/martinblech/xmltodict] for valid parameters.

Users should be able to construct dictionaries as defined by the xmltodict library, and responses should be returned in the canonical format.

Example XMLAdapterMixin configuration keywords:

class MyXMLClientAdapter(XMLAdapterMixin, TapiocaAdapter):
 ...
 def get_request_kwargs(self, api_params, *args, **kwargs):
 ...
 # omits XML declaration when constructing requests from dictionary
 kwargs['xmltodict_unparse__full_document'] = False
 ...

TapiocaAdapter class

	
class TapiocaAdapter

	

Attributes

	
api_root

	

This should contain the base URL that will be concatenated with the resource mapping itens and generate the final request URL. You can either set this attribute or use the get_api_root method.

	
serializer_class

	

For more information about the serializer_class attribute, read the serializers documentation.

Methods

	
get_api_root(self, api_params, **kwargs)

	

This method can be used instead of the api_root attribute. You might also use it to decide which base URL to use according to a user input.

def get_api_root(self, api_params, **kwargs):
 if api_params.get('development'):
 return 'http://api.the-dev-url.com/'
 return 'http://api.the-production-url.com/'

You may also need to set different api_root to a specific resource. To do that you can access the resource_name inside kwargs.

def get_api_root(self, api_params, **kwargs):
 if kwargs.get('resource_name') == 'some_resource_name':
 return 'http://api.another.com/'
 else:
 return self.api_root

	
get_resource_mapping(self, api_params)

	

You can use it to customize the resource map dynamically.

def get_resource_mapping(self, api_params):
 if api_params.get('version') == 'v2':
 return RESOURCE_MAPPING_V2

 return self.resource_mapping

	
get_request_kwargs(self, api_params, *args, **kwargs)

	

This method is called just before any request is made. You should use it to set whatever credentials the request might need. The api_params argument is a dictionary and has the parameters passed during the initialization of the tapioca client:

cli = Facebook(access_token='blablabla', client_id='thisistheis')

For this example, api_params will be a dictionary with the keys access_token and client_id.

Here is an example of how to implement Basic Auth:

from requests.auth import HTTPBasicAuth

class MyServiceClientAdapter(TapiocaAdapter):
 ...
 def get_request_kwargs(self, api_params, *args, **kwargs):
 params = super(MyServiceClientAdapter, self).get_request_kwargs(
 api_params, *args, **kwargs)

 params['auth'] = HTTPBasicAuth(
 api_params.get('user'), api_params.get('password'))

 return params

	
process_response(self, response)

	

This method is responsible for converting data returned in a response to a dictionary (which should be returned). It should also be used to raise exceptions when an error message or error response status is returned.

	
format_data_to_request(self, data)

	

This converts data passed to the body of the request into text. For example, if you need to send JSON, you should use json.dumps(data) and return the response. See the mixins section above.

	
response_to_native(self, response)

	

This method receives the response of a request and should return a dictionay with the data contained in the response. see the mixins section above.

	
get_iterator_next_request_kwargs(self, iterator_request_kwargs, response_data, response)

	

Override this method if the service you are using supports pagination. It should return a dictionary that will be used to fetch the next batch of data, e.g.:

def get_iterator_next_request_kwargs(self,
 iterator_request_kwargs, response_data, response):
 paging = response_data.get('paging')
 if not paging:
 return
 url = paging.get('next')

 if url:
 iterator_request_kwargs['url'] = url
 return iterator_request_kwargs

In this example, we are updating the URL from the last call made. iterator_request_kwargs contains the paramenters from the last call made, response_data contains the response data after it was parsed by process_response method, and response is the full response object with all its attributes like headers and status code.

	
get_iterator_list(self, response_data)

	

Many APIs enclose the returned list of objects in one of the returned attributes. Use this method to extract and return only the list from the response.

def get_iterator_list(self, response_data):
 return response_data['data']

In this example, the object list is enclosed in the data attribute.

	
is_authentication_expired(self, exception, *args, **kwargs)

	

Given an exception, checks if the authentication has expired or not. If so and `refresh_token_by_default=True` or
the HTTP method was called with `refresh_token=True`, then it will automatically call `refresh_authentication`
method and retry the original request.

If not implemented, `is_authentication_expired` will assume `False`, `refresh_token_by_default` also
defaults to `False` in the client initialization.

	
refresh_authentication(self, api_params, *args, **kwargs):

	

Should do refresh authentication logic. Make sure you update api_params dictionary with the new token. If it successfully refreshs token it should return a truthy value that will be stored for later access in the executor class in the refresh_data attribute. If the refresh logic fails, return a falsy value. The original request will be retried only if a truthy is returned.

Contributors

Thanks!

	Filipe Ximenes (filipeximenes@gmail.com)

	André Ericson (de.ericson@gmail.com)

	Luiz Sotero (luizsotero@gmail.com)

	Elias Granja Jr (contato@eliasgranja.com)

	Rômulo Collopy (romulocollopy@gmail.com)

Changelog

2.3.0

	Adds get_resource_mapping on TapiocaAdapter to customize the resource map dynamically.

2.2.0

	Remove unnecessary version pinning of arrow library

	Drops support for python 3.6 and 3.7

	Adds support for python 3.11

2.1.0

	Make TapiocaClient and TapiocaClientExecutor pickle-able.

2.0.2

	Updated deprecated collections import

	Adds support for python 3.10

2.0.1

	Updates the list of supported versions in setup.py

2.0

	Drops support for python 2.7 and 3.4

	Adds support for python 3.7 and 3.8

1.5.1

	Adds a resource_name kwarg to the get_api_root method

1.5

	Removes support for Python 3.3

1.4

	Adds support to Session requests

1.3

	refresh_authentication should return data about the refresh token process

	If a falsy value is returned by refresh_authentication the request wont be retried automatically

	Data returned by refresh_authentication is stored in the tapioca class and can be accessed in the executor via the attribute refresh_data

1.2.3

	refresh_token_by_default introduced to prevent passing refresh_token on every request.

1.1.10

	Fixed bugs regarding request_kwargs passing over calls

	Fixed bugs regarding external serializer passing over calls

	Wrapper instatiation now accepts default_url_params

1.1

	Automatic refresh token support

	Added Python 3.5 support

	Added support for OrderedDict

	Documentation cleanup

1.0

	Data serialization and deserialization

	Access CamelCase attributes using snake_case

	Dependencies are now tied to specific versions of libraries

	data and response are now attributes instead of methods in the executor

	Added status_code attribute to tapioca executor

	Renamed status exception attribute to status_code

	Fixed return for dir call on executor, so it’s lot easier to explore it

	Multiple improvments to documentation

0.6.0

	Giving access to request_method in get_request_kwargs

	Verifying response content before trying to convert it to json on JSONAdapterMixin

	Support for in operator

	pep8 improvments

0.5.3

	Adding max_pages and max_items to pages method

0.5.1

	Verifying if there’s data before json dumping it on JSONAdapterMixin

0.5.0

	Automatic pagination now requires an explicit pages() call

	Support for len()

	Attributes of wrapped data can now be accessed via executor

	It’s now possible to iterate over wrapped lists

0.4.1

	changed parameters for Adapter’s get_request_kwargs. Also, subclasses are expected to call super.

	added mixins to allow adapters to easily choose witch data format they will be dealing with.

	ServerError and ClientError are now raised on 4xx and 5xx response status. This behaviour can be customized for each service by overwriting adapter’s process_response method.

Index

 A
 | C
 | F
 | G
 | I
 | P
 | R
 | S
 | T

A

 	
 	api_root

C

 	
 	ClientError (built-in class)

F

 	
 	format_data_to_request()

G

 	
 	get_api_root()

 	get_iterator_list()

 	
 	get_iterator_next_request_kwargs()

 	get_request_kwargs()

 	get_resource_mapping()

I

 	
 	is_authentication_expired()

P

 	
 	process_response()

R

 	
 	response_to_native()

S

 	
 	serializer_class

 	
 	ServerError (built-in class)

 	SimpleSerializer (built-in class)

T

 	
 	TapiocaAdapter (built-in class)

 	
 	TapiocaException (built-in class)

 _images/tapioca.jpg

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to tapioca-wrapper documentation!

 		
 About

 		
 Quickstart

 		
 Using a tapioca package

 		
 What’s tapioca?

 		
 Getting started

 		
 TapiocaClient object

 		
 Resources

 		
 Fetching data

 		
 Exploring data

 		
 Iterating over data

 		
 TapiocaClientExecutor object

 		
 Making requests

 		
 Accessing raw data

 		
 Dynamically fetching pages

 		
 Accessing wrapped data attributes

 		
 Opening documentation in the browser

 		
 Opening any link in the browser

 		
 Features

 		
 TapiocaClient

 		
 Default URL params

 		
 Using an existing requests.Session

 		
 TapiocaClientExecutor

 		
 Accessing raw response data

 		
 HTTP calls

 		
 Auth refreshing (*)

 		
 Pagination (*)

 		
 Open docs (*)

 		
 Open in the browser (*)

 		
 Exceptions

 		
 Serializers

 		
 Serializers

 		
 Usage

 		
 Serialization

 		
 Deserialization

 		
 Swapping the default serializer

 		
 Built-ins

 		
 Writing a custom serializer

 		
 Serializing

 		
 Deserializing

 		
 Exceptions

 		
 Catching API errors

 		
 Flavours

 		
 Available Flavours

 		
 Facebook

 		
 Twitter

 		
 Mandrill

 		
 Parse

 		
 Bitbucket

 		
 Disqus

 		
 Harvest

 		
 CrunchBase

 		
 Otter

 		
 GitHub

 		
 Meetup

 		
 Toggl

 		
 Braspag

 		
 Iugu

 		
 Instagram

 		
 Youtube

 		
 Asana

 		
 Desk

 		
 Mailgun

 		
 Discourse

 		
 StatusPage

 		
 Trello

 		
 Your flavour

 		
 Building a wrapper

 		
 Wrapping an API with Tapioca

 		
 Adapter

 		
 Features

 		
 Resource Mapping

 		
 Formatting data

 		
 Exceptions

 		
 Pagination (optional)

 		
 Serializers (optional)

 		
 Refreshing Authentication (optional)

 		
 XMLAdapterMixin Configuration (only if required)

 		
 TapiocaAdapter class

 		
 Attributes

 		
 Methods

 		
 Contributors

 		
 Thanks!

 		
 Changelog

 		
 2.3.0

 		
 2.2.0

 		
 2.1.0

 		
 2.0.2

 		
 2.0.1

 		
 2.0

 		
 1.5.1

 		
 1.5

 		
 1.4

 		
 1.3

 		
 1.2.3

 		
 1.1.10

 		
 1.1

 		
 1.0

 		
 0.6.0

 		
 0.5.3

 		
 0.5.1

 		
 0.5.0

 		
 0.4.1

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

